Scheduling medical trainees via linear programming models implemented in Excel

Roshun Sankaran, Anna Munaco, William Pozehl, and Amy Cohn

Initial Clinical Experience (ICE)

Background

New medical school curricula replace the traditional 2+2 format with continued science education and clinical exposure throughout medical school.

The "Old Model"

- Longitudinal Professional Development
- Basic Science (M1)
- Clinical Rotations (M2)
- Clinical Rotations and Electives (M4)

The "New Model"

- Scientific Truth (M1)
- Clinical Truth (M2)
- Branches (M3 and M4)
- Organization Learning
- Clinical Rotations
- Clinical Rotations and Electives

Solution Approach

We formulated a linear programming model and implemented in a Microsoft Excel workbook, using the OpenSolver add-in.

Problem Statement

ICE schedules must assign 168 first-year medical students (M1s) to clinics in which they shadow healthcare professionals, subject to numerous rules.

Model

- Decision Variables
 - \(x_{crd} \) 1 if resident is assigned to clinic \(c \) in rotation \(r \)
 - \(c_i \) 1 if resident is assigned to inpatient service \(c \)
 - \(c_s \) 1 if resident is assigned to inpatient clinic \(c_s \)
 - \(c_{msp} \) 1 if resident is assigned to Medical Spanish requirement

- Objective Function

 \[
 \text{min} \sum_{c \in C, r \in R} \sum_{i \in I} \sum_{s \in S} (a + b) x_{crd} + v_i x_{crd} + c_s x_{crd} + c_{msp} x_{crd} \]

 - \(a + b \) Assignments to least-preferred clinics
 - \(v_i \) Inpatient/Outpatient violations
 - \(c_s \) Car Violations
 - \(c_{msp} \) Medical Spanish Violations

- Constraints
 - Generalized full schedules rapidly (solve time < 15 seconds)
 - Collaborated with program directors to fine-tune assignments
 - Applied tool to schedule four semesters to date
 - Output number of rule violations for directors' review
 - Improved medical student satisfaction
 - Derived high impact from mathematically simple, straightforward modeling with undergraduate-led project team
 - Fostered long-term collaboration with medical school

Pediatric Inpatient Night Team

Background

Night teams in the Pediatric inpatient units are composed of residents and interns from the Pediatrics, Medicine-Pediatrics, and Emergency Medicine programs.

Three senior residents and three interns are assigned to the night team at any time.

Solution Approach

We formulated a linear programming model and implemented in a Microsoft Excel workbook, using the OpenSolver add-in.

Problem Statement

Night Team schedules must effectively balance residents' competing responsibilities and ensure adequate coverage of the Pediatric Emergency Department.

Model

- Decision Variables
 - \(x_{crd} \) 1 if resident is assigned to team on date \(d \)
 - \(x_{c_{msp}} \) 1 if resident is assigned to attend conference on date \(d \)

- Constraints
 - 1. Activity per resident per day
 - 2. Every activity must be adequately covered each day
 - 3. No resident can work more than two consecutive nights in any work sequence
 - 4. No resident can work more than six consecutive nights in any work sequence
 - 5. Emergency Medicine residents must attend at least one of their conferences during rotation

Impact/Results

- Generated full schedules rapidly (solve time < 5 seconds)
- Reduced chief resident burden from approximately 6 hours per month to half hour
- Automated scheduling to more effectively balance resident responsibilities
- Improved compliance with resident day-off requests
- Completed by undergraduate-led project teams
- Provided quick, impactful outcomes that strengthened relationships with Michigan Medicine residency programs

Acknowledgments

We thank the following organizations for funding this work:

Special thanks to Joseph House, MD, Angie Sullivan, Jonathan Mogannan, Emily Smichrak, Henry Ballot, and Joseph Porcel for their work in developing this tool.