Linear Programming Tools for Scheduling Trainees in Healthcare

William Pozehl
Rishindra Reddy MD
F. Jacob Seagull PhD
Mark Daskin PhD

Amy Cohn PhD
Janice Davis
Nate Janes
Yicong Zhang
Presentation Outline

• Background
• Motivation
• Model Formulation
• Model Implementation
• Conclusions and Future Work
Presentation Outline

- **Background**
 - Motivation
 - Model Formulation
 - Model Implementation
 - Conclusions and Future Work
Healthcare Training at Michigan

- 1,199 trainees
- 105 training programs
- 25 residencies
- 80 fellowships
Importance of Scheduling
Who does the Scheduling?

- Program dependent
 - Chief Resident
 - Faculty (Program Director)
 - Senior Administrative Staff
Presentation Outline

• Background

• **Motivation**
 • Model Formulation
 • Model Implementation
 • Conclusions and Future Work
Challenges in Scheduling

- Time-intensive process
- Numerous stakeholders
- Complex rules and legal requirements
- Conflicting goals
- Varying strategies and interdependencies
- “Good enough” mentality
Resident Education Requirements

- Each program has unique educational requirements (operative and disease exposure)

<table>
<thead>
<tr>
<th>PGY1</th>
<th>PGY2</th>
<th>PGY3</th>
<th>PGY4</th>
<th>PGY4</th>
<th>PGY6</th>
<th>PGY7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>MAIZE</td>
<td>MAIZE</td>
<td>MAIZE</td>
<td>MAIZE</td>
<td>MAIZE</td>
<td>MAIZE</td>
</tr>
<tr>
<td>2 2</td>
<td>RED</td>
<td>RED</td>
<td>RED</td>
<td>RED</td>
<td>RED</td>
<td>RED</td>
</tr>
<tr>
<td>3 3</td>
<td>BLUE</td>
<td>BLUE</td>
<td>BLUE</td>
<td>BLUE</td>
<td>BLUE</td>
<td>BLUE</td>
</tr>
<tr>
<td>4 4</td>
<td>WHITE</td>
<td>WHITE</td>
<td>WHITE</td>
<td>WHITE</td>
<td>WHITE</td>
<td>WHITE</td>
</tr>
<tr>
<td>5 5</td>
<td>MAIZE/BLUE/WHITE</td>
<td>MAIZE/BLUE/WHITE</td>
<td>BLUE</td>
<td>ACAD</td>
<td>RED</td>
<td>WHITE</td>
</tr>
<tr>
<td>6 6</td>
<td>ACS</td>
<td>ACS</td>
<td>ACS</td>
<td>ACS</td>
<td>ACS</td>
<td>ACS</td>
</tr>
<tr>
<td>7 7</td>
<td>HAND</td>
<td>SJMH</td>
<td>SJMH</td>
<td>SJMH</td>
<td>SJMH</td>
<td>SJMH</td>
</tr>
<tr>
<td>8 8</td>
<td>DSP</td>
<td>SJMH</td>
<td>SJMH</td>
<td>SJMH</td>
<td>SJMH</td>
<td>SJMH</td>
</tr>
<tr>
<td>9 9</td>
<td>TBB</td>
<td>PLASA</td>
<td>PLASA</td>
<td>PLASA</td>
<td>PLASA</td>
<td>PLASA</td>
</tr>
<tr>
<td>10 10</td>
<td>VA GS</td>
<td>STX</td>
<td>DSP</td>
<td>SICU</td>
<td>ACAD</td>
<td>STX</td>
</tr>
<tr>
<td>11 11</td>
<td>VA GS</td>
<td>VASC</td>
<td>FLOAT</td>
<td>SVA</td>
<td>ORTHOS</td>
<td>SVA</td>
</tr>
<tr>
<td>12 12</td>
<td>VA GS</td>
<td>VA GS-VASC</td>
<td>VA GS-VASC</td>
<td>VA GS</td>
<td>VA GS-VASC</td>
<td>VA GS-VASC</td>
</tr>
</tbody>
</table>

General Plastic Surgery (dermatology fellowship level per year)
Service Coverage Requirements

- Each service requires a resident complement comprised of varying skillsets and disciplines
Traditional Scheduling Approach

1. Build rotation templates
2. Adjust for coverage and educational needs
3. Renegotiate after reaching a dead-end

<table>
<thead>
<tr>
<th>JULY</th>
<th>AUG</th>
<th>SEPT</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APRIL</th>
<th>MAY</th>
<th>JUNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLUE</td>
<td>MAIZE</td>
<td>PLA</td>
<td>SVA</td>
<td>SICU</td>
<td>BLUE</td>
<td>WHITE</td>
<td>PLA</td>
<td>STX</td>
<td>VA G&V</td>
<td>VA CT</td>
<td>DSP</td>
</tr>
<tr>
<td>VA G&V</td>
<td>PLA</td>
<td>MAIZE</td>
<td>WHITE</td>
<td>ACS</td>
<td>BLUE</td>
<td>SICU</td>
<td>BLUE</td>
<td>PLA</td>
<td>STX</td>
<td>STX</td>
<td>VA CT</td>
</tr>
<tr>
<td>VA CT</td>
<td>PLA</td>
<td>BLUE</td>
<td>DSP</td>
<td>VA G&V</td>
<td>ACS</td>
<td>SICU</td>
<td>BLUE</td>
<td>MAIZE</td>
<td>WHITE</td>
<td>SVA</td>
<td>SVA</td>
</tr>
<tr>
<td>MAIZE</td>
<td>VA CT</td>
<td>VA G&V</td>
<td>BLUE</td>
<td>SVA</td>
<td>WHITE</td>
<td>ACS</td>
<td>SICU</td>
<td>BLUE</td>
<td>STX</td>
<td>PLA</td>
<td>DSP</td>
</tr>
</tbody>
</table>
Design a linear program which automates creation of a block schedule that satisfies the needs of the residents and services.
Presentation Outline

- Background
- Motivation
- **Model Formulation**
- Model Implementation
- Conclusions and Future Work
A technique to solve complicated story problems

Four basic parts
- Sets and parameters
- Decision variables
- Objective function
- Constraints

\[
\begin{align*}
\text{min} & \quad 2x_1 + x_2 \\
\text{subject to} & \quad x_1 + x_2 \geq 5 \\
& \quad 2x_1 + 3x_2 \leq 11 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

Optimal Solution: (1, 4)
Objective Value = 6
Sets

R: residents

C: resident categories

S: services

M: months
Parameters

\(a_{rc} \in \{0, 1\} \): indicates if resident \(r \) fits category \(c \)

\(\mathcal{L}_{csm} \): lower bound on number of residents fitting category \(c \) in service \(s \) during month \(m \)

\(\mathcal{U}_{csm} \): upper bound on number of residents fitting category \(c \) in service \(s \) during month \(m \)

\(\lambda_{rs} \): lower bound on number of months resident \(r \) must spend on service \(s \)

\(\mu_{rs} \): upper bound on number of months resident \(r \) must spend on service \(s \)
Decision Variables

\[x_{rsm} \in \{0, 1\}: \text{whether resident } r \text{ is assigned to service } s \text{ in month } m \]
\[\forall r \in R, s \in S, m \in M \]

The base model does not have an objective function.
Constraints

1. Every resident gets assigned to one service every month
 \[\sum_{s \in S} x_{rsm} = 1, \quad \forall r \in R, m \in M \]

2. Every resident satisfies their educational requirements
 \[\lambda_{rs} \leq \sum_{m \in M} x_{rsm} \leq \mu_{rs}, \quad \forall r \in R, s \in S \]

3. Every service satisfies their service coverage needs
 \[L_{csm} \leq \sum_{r \in R} a_{rc} x_{rsm} \leq U_{csm}, \quad \forall c \in C, s \in S, m \in M \]

\vdots
Constraints

1. Every resident gets assigned to one service every month

\[x_{Smith, Maize, July} \]
Is Dr. Smith assigned to the Maize service in July?

If yes, \(x_{Smith, Maize, July} = 1 \). If no, \(x_{Smith, Maize, July} = 0 \).

\[x_{Smith, Blue, July} \]
Is Dr. Smith assigned to the Blue service in July?

\[x_{Smith, White, July} \]
Is Dr. Smith assigned to the White service in July?

\[x_{Smith, Maize, July} + x_{Smith, Blue, July} + x_{Smith, White, July} = 1 \]
Constraints

1. Every resident gets assigned to one service every month

\[x_{Smith, Maize, July} + x_{Smith, Blue, July} + x_{Smith, White, July} = 1 \]
\[x_{Smith, Maize, Aug} + x_{Smith, Blue, Aug} + x_{Smith, White, Aug} = 1 \]
\[\vdots \]
\[x_{Smith, Maize, June} + x_{Smith, Blue, June} + x_{Smith, White, June} = 1 \]

\[x_{Jones, Maize, July} + x_{Jones, Blue, July} + x_{Jones, White, July} = 1 \]
\[\vdots \]
\[x_{Jones, Maize, June} + x_{Jones, Blue, June} + x_{Jones, White, June} = 1 \]

\[\sum_{s\in S} x_{rsm} = 1, \quad \forall \ r \in R, \ m \in M \]
2. Every resident satisfies their educational requirements

\[x_{Smith, Maize, July} \]

Is Dr. Smith assigned to the Maize service in July?

If yes, \(x_{Smith, Maize, July} = 1 \). If no, \(x_{Smith, Maize, July} = 0 \).

\[x_{Smith, Maize, Aug} \]

Is Dr. Smith assigned to the Maize service in August?

\[x_{Smith, Maize, June} \]

Is Dr. Smith assigned to the Maize service in June?

\[1 \leq x_{Smith, Maize, July} + x_{Smith, Maize, Aug} + \ldots + x_{Smith, Maize, June} \leq 2 \]
Constraints

2. Every resident satisfies their educational requirements

\[1 \leq x_{Smith, Maize, July} + x_{Smith, Maize, Aug} + \ldots + x_{Smith, Maize, June} \leq 2 \]
\[1 \leq x_{Smith, Blue, July} + x_{Smith, Blue, Aug} + \ldots + x_{Smith, Blue, June} \leq 2 \]
\[1 \leq x_{Smith, White, July} + x_{Smith, White, Aug} + \ldots + x_{Smith, White, June} \leq 2 \]

\[1 \leq x_{Jones, Maize, July} + x_{Jones, Maize, Aug} + \ldots + x_{Jones, Maize, June} \leq 2 \]
\[\vdots \]
\[1 \leq x_{Jones, Blue, July} + x_{Jones, Blue, Aug} + \ldots + x_{Jones, Blue, June} \leq 2 \]

\[\lambda_{rs} \leq \sum_{m \in M} x_{rsm} \leq \mu_{rs}, \quad \forall \ r \in R, s \in S \]
3. Every service satisfies their service coverage needs

\[x_{\text{Smith, Maize, July}} \]
Is Dr. Smith assigned to the Maize service in July?
If yes, \(x_{\text{Smith, Maize, July}} = 1 \). If no, \(x_{\text{Smith, Maize, July}} = 0 \).

\[a_{\text{Smith, GS}} \]
Is Dr. Smith a General Surgery resident?
If yes, \(a_{\text{Smith, GS}} = 1 \). If no, \(a_{\text{Smith, GS}} = 0 \).

\[a_{\text{Smith, PGY1}} \]
Is Dr. Smith a PGY1 resident?
If yes, \(a_{\text{Smith, PGY1}} = 1 \). If no, \(a_{\text{Smith, PGY1}} = 0 \).

\[a_{\text{Smith, GS_PGY1}} \]
Is Dr. Smith a General Surgery PGY1 resident?
If yes, \(a_{\text{Smith, GS_PGY1}} = 1 \). If no, \(a_{\text{Smith, GS_PGY1}} = 0 \).
3. Every service satisfies their service coverage needs

\[
3 \leq a_{\text{Smith,GS}} \times \text{Smith, Maize, July} + a_{\text{Jones,GS}} \times \text{Jones, Maize, July} + a_{\text{Chan,GS}} \times \text{Chan, Maize, July} + \cdots + a_{\text{Gupta,GS}} \times \text{Gupta, Maize, July} \\
\leq 4
\]

\[
1 \leq a_{\text{Smith,PGY1}} \times \text{Smith, Maize, July} + a_{\text{Jones,PGY1}} \times \text{Jones, Maize, July} + a_{\text{Chan,PGY1}} \times \text{Chan, Maize, July} + \cdots + a_{\text{Gupta,PGY1}} \times \text{Gupta, Maize, July} \leq 2
\]

\[
\mathcal{L}_{\text{csm}} \leq \sum_{r \in R} a_{rc} x_{rsm} \leq \mathcal{U}_{\text{csm}}, \quad \forall \ c \in C, \ s \in S, \ m \in M
\]
Expanded Model

- Distributed Educational Requirements
- Distributed Coverage Needs
- Extended Rotations
- Service Sequencing
- Service Spacing
- Resident Pairing
Presentation Outline

• Background
• Motivation
• Model Formulation
• **Model Implementation**
• Conclusions and Future Work
Implementation Process

Sets
- R: residents
- C: resident categories
- S: services
- M: months

Parameters
- $\alpha_r \in (0, 1)$: whether resident r fits category c
- $\ell_{c,m}, \bar{u}_{c,m}$: lower, upper bounds on staffing of residents fitting category c in service during month m
- $\lambda_{r,s}, \mu_{r,s}$: lower, upper bounds on months resident r must spend on service s

Decision Variables
- $x_{r, s, m} \in \{0,1\}$: whether resident r is assigned to service s in month m

Objective Function
Presentation Outline

• Background
• Motivation
• Model Formulation
• Model Implementation

• Conclusions and Future Work
Recap

• Scheduling issues affect hospital workflow, training quality, and patient safety
• Scheduling residency programs at UMHS is highly interdependent, complex, and poorly executed
• We can address these scheduling needs using a linear programming formulation
Future Work

• Define metrics for schedule optimality
 – Minimize deviation from desired resident complement by service
 – Maximize satisfied requests for educational customization

• Apply model to improve scheduling for other training programs
Related Applications

- Pediatric Medicine rotation schedule
- C.S. Mott Emergency Department shift schedule
- Chemotherapy infusion patient schedule
- Physician clinic/OR schedule
- Master surgical schedule problem
- Nurse staff scheduling
Acknowledgements

• Center for Healthcare Engineering and Patient Safety
• University of Michigan Department of Surgery
• The Seth Bonder Foundation
• The Doctors Company Foundation
Questions [?] and Comments [!]

Billy Pozehl
pozewil@umich.edu

Dr. Rishi Reddy
reddyrm@med.umich.edu

Prof. Jake Seagull
jseagull@med.umich.edu

Prof. Amy Cohn
amycohn@med.umich.edu

Prof. Mark Daskin
msdaskin@umich.edu

Janice Davis
janiced@med.umich.edu