Scheduling Residents to Achieve Adequate Training on Procedures with Random Occurrences

William Pozehl, B.S.E.

University of Michigan

October 9, 2013
Collaborators

• Amy Cohn, Ph.D.¹
• Rishi Reddy, M.D.²
• Jacob Seagull, Ph.D.³
• Mark Daskin, Ph.D.¹
• Jim Bagian, M.D, P.E.¹
• Andrea Obi, M.D.²
• Jennifer Chung, M.D.⁴
• Ryan Chen¹

1: Univ. of Michigan Department of Industrial and Operations Engineering
2: Univ. of Michigan Department of Surgery
3: Univ. of Michigan Department of Medical Education
4: Univ. of Michigan Medical School
Acknowledgements

- Center for Healthcare Engineering and Patient Safety
- UM Summer Undergraduate Research Experience
- The Seth Bonder Foundation
- The Doctors Company Foundation
Overview

- Motivation
- Graduate Medical Education
- Transplant Surgery at UMHS
- Ask the Audience
- Simulator Walkthrough
- Conclusions
- Current Efforts and Next Steps
Motivation

- 3 of 10 deaths due to cardiovascular disease or COPD in the United States
- Medicare population expected to double by 2030
- Aging cardiothoracic (CT) surgeons
 - Mean age: 55 years old
 - 65% (lung) and 70% (heart) are 51+ years old
- Decreasing number of CT surgeons nationally
 - 2004-08: 26% decline in CT fellows
 - 2010: fewer applicants than positions (93/116)
Residency/Fellowship: graduate medical training required for certification to practice independently

Medical School: 4 years
Residency: 3 – 7 years
Fellowship: 2 – 3 years
Independent Practice

Call Schedule: schedule of residents/fellows responsible for covering emergency operations

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chen</td>
<td>2</td>
<td>Jones</td>
<td>3</td>
<td>Smith</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Smith</td>
<td>8</td>
<td>Reddy</td>
<td>9</td>
<td>Chen</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>Smith</td>
<td>16</td>
<td>Reddy</td>
<td>17</td>
<td>Chen</td>
<td>18</td>
</tr>
<tr>
<td>21</td>
<td>Chen</td>
<td>22</td>
<td>Jones</td>
<td>23</td>
<td>Smith</td>
<td>24</td>
</tr>
<tr>
<td>28</td>
<td>Reddy</td>
<td>29</td>
<td>Chen</td>
<td>30</td>
<td>Jones</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Chen</td>
<td>11</td>
<td>Smith</td>
<td>12</td>
<td>Reddy</td>
<td>13</td>
</tr>
<tr>
<td>19</td>
<td>Smith</td>
<td>20</td>
<td>Reddy</td>
<td>21</td>
<td>Chen</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Jones</td>
<td>14</td>
<td>Jones</td>
<td>15</td>
<td>Smith</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>Reddy</td>
<td>24</td>
<td>Smith</td>
<td>25</td>
<td>Chen</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>Jones</td>
<td>30</td>
<td>Smith</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transplant Surgery at UMHS

- 2-year Fellowship in Section of Thoracic Surgery
- High-volume training program
- 2 junior + 2 senior fellows each year
- Q4 call schedule
- Beyond scope of core program requirements
- UNOS Certification Requirements:
 - 20 heart transplants
 - 15 lung transplants
If a program has 4 fellows on a Q4 call schedule and expects 40 transplants per year, what is the probability that each fellow participates in at least 10 transplants within a year?

A) 5%
B) 25%
C) 45%
D) 65%
E) 85%
Answering the Question

• Analyze historical data (Jan. 2009 – May 2011)

\[IAT(\text{transplants}) \sim \text{Exponential}(\lambda=0.10) \]

\[\text{Transplants/year} \sim \text{Poisson}(\lambda=40) \]

• Simulate transplants occurrences
• Match occurrences to call schedule
• Assess performance and generate graphical reports for medical personnel to inform decision-making
Simulator: User Inputs

- Number of fellows \((4)\)
- Expected number of transplants per year \((40)\)
- UNOS certification requirement \((10)\)
- Duration of fellowship in days \((365)\)
- Rotation method \((Q4\ call\ schedule)\)
- Number of repetitions \((1 – 100,000)\)
- Advanced settings

(default, canonical settings)
Graphical Outputs: A Single Repetition

Day of Year

Transplants

Fellow 1 8
Fellow 2 8
Fellow 3 8
Fellow 4 14
Unassigned 1

Categorical Analysis

CATEGORY NAME [PERCENTAGE]
Graphical Outputs: 100,000 Repetitions

Mean Number of Fellows Certified = 1.91
Implications: Potential System Changes

- Reduce program size **✗**
- Increase program case volume **✗**
- Change certification policies **✓**
 - Surgical simulator certification
 - Proficiency-based certification
- Try alternative scheduling paradigms **✓**
 - On Call Until Procedure
 - On Call Until Certified
100,000 Repetitions: On Call Until Procedure

Mean Number of Fellows Certified = 1.94
100,000 Repetitions: On Call Until Certified

Mean Number of Fellows Certified = 3.32

Number of Fellows Certified:
- 0: 0.0%
- 1: 0.0%
- 2: 7.1%
- 3: 53.9%
- 4: 38.9%
Conclusions

• We can use simulation to assess program performance
• UMHS should not expect to adequately train all fellows for cardiothoracic transplants in most years
• Alternative scheduling paradigms may increase the rate of certification for cardiothoracic transplants at UMHS, but feasibility is a concern
Current Efforts and Future Work

• Redesign the simulator to incorporate:
 – Other procedure types (scheduled and unscheduled)
 – Other distributions to describe procedure arrivals
 – ACGME work-hour restrictions
 – Fellow characteristics (junior vs. senior, etc.)
 – More fellow-to-procedure matching paradigms

• Assess other residency/fellowship programs at UMHS and partner institutions

• Build optimization models
Questions / Comments

The simulator can be found at: transplantsimulator.herobo.com.

pozewil@umich.edu
amycohn@med.umich.edu