Pareto Optimality in Pediatric Residency Shift Scheduling

Presenter: Young-Chae Hong M.S.E.

Co-Authors: Amy Cohn, Ph.D. & Ed O'Brien M.D.

University of Michigan

ISERC at Nashville (05 / 31 / 2015)

Collaborators

- Amy Cohn, Ph.D
- Edmond O'Brien, M.D
- William Pozehl, M.S.E.
- Zachary VerSchure

Content

- Background
- Motivation
- Formulations
 - Weighted sum method
 - Metric constraints method
- Result
- Ongoing Research
 - Pareto method

Resident Responsibilities in the U-M Pediatric Emergency Department

- 3-7 year medical training program
 - Responsibilities differ by residency year
- Balancing patient care and educational requirements
 - In hospital
 - Caring for patients
 - Teaching medical students
 - Learning from attending physicians
 - Out of hospital
 - Community clinics
 - Conferences
 - Other educational requirements

Pediatric ED: Scheduling Considerations

- All shifts assigned to a resident
- Appropriate coverage
 - e.g. certain shifts require a senior resident
- ACGME rules (similar to ABET for engineering)
 - e.g. 10 hour break rule
- Several different residency programs
 - Pediatrics (PED)
 - Family practice (FP)
 - Emergency medicine (EM)
- And others

Motivation

- Scheduling residents
 - Complicated requirements
 - 25 governing rules and preferences
 - Educational goals
 - Patient care
 - Regulations / Safety

	3				1		7	
6			8					2
		1		4	V-)5	5		
	7				2		4	
2				9				6
	4		3				1	
		5		3		4		
1					6			5
	2		1				3	

- Chief resident built monthly schedule by hand
 - Time consuming process: 20 25 hours / month
 - Transfer every year: no scheduling experience in July
 - Guess and check: errors / tedious correction process

Motivation

Practical Significance

- Poor-quality schedule
 - Residents: decreased interest in learning
 - Patients: adverse health events

(Smith-Coggins R, et. al. (1994): "Relationship of day versus night sleep to physician performance and mood." Annals of Emergency Medicine)

Goals

- Solve for feasible schedule quickly
- Create a good quality schedule with no violations

Objectives: Shift Fairness

- Total / night shift equity
 - Equal opportunities for training
 - Improved morale and learning ability

Resident Name	Smith	Jones	Chen	Joe
Night Shifts / Total Shifts	0/7	1/7	1/7	5/7
Fairness				

- Total shift equity (TSE): $(\sum t_{ij}, t_{ij} = |D_i D_j|, i > j)$
- Night shift equity (NSE): $(\sum n_{ij}, n_{ij} = |N_i N_j|, i > j)$

Objectives: Undesired Shift

- Bad sleep patterns and post-clinic shifts
 - Reduces resident quality of life
 - Decreases patient safety

Bad sleep pattern

Post-Clinic shift

Minimum bad sleep patterns (BSP): ($\sum count$)

Objectives: Undesired Shift

- Bad sleep patterns and post-clinic shifts
 - Reduces resident quality of life
 - Decreases patient safety

Bad sleep pattern

Post-Clinic shift

Minimum post-clinic shifts (PCC): $(\sum count)$

Formulation: Decision Variables

Sets

- R: set of residents
- D: set of days in the schedule
- S: set of shifts

Decision Variables

- Binary: x_{rds} ∈ {0, 1}
 - 1 if resident r works shift s on day d
 - 0 otherwise

Residents Name						
Smith	Sanchez	Chen	Shah			

	27 th	•••	1 st		31 st
7a-4p	Shah	•••			
9a-6p	Joe	•••		•••	Shah
12p-9p	Chen	•••			Chen
4p-1a	Smith	•••	Sanchez	•••	
5p-2a		•••			Sanchez
8p-5a	Sanchez	•••	Smith	•••	Smith
11p-8a		•••	Chen	•••	Joe

Formulation: Constraints

- Constraints (rules/requirements)
 - One resident assigned to each shift in the month
 - $\sum_{r \in \{\text{all}\}} x_{rds} = 1$, $\forall d, \forall s$
 - Meets shift requests
 - $x_{rds} = 0$, $\forall r, \forall d, s \in \{\text{day off, conferences, continuity clinic}\}$
 - Ensure resident type appropriate for shift
 - $\sum_{r \in \{PED\}} \sum_{s \in P} x_{rsd} \ge 1$, $\forall d, P = \{\{7a,9a\}, \{4p,5p\}, \{8p,11p\}\}$
 - Intern-forbidden shifts
 - $\sum_{r \in \{\text{interns}\}} \sum_{d} x_{rsd} = 0, \forall s \in \{7a, 11p\}$
 - And others

Multi-Criteria Problem

- Multi-Criteria schedule
 - Metrics for UM Pediatric Emergency Department
 - Total shift equity (TSE)
 - Night shift equity (NSE)
 - Minimum bad sleep patterns (BSP)
 - Minimum post-clinic shifts (PCC)

Weights?
Preferences?
Trade-off?

Multi-objective Mathematical Programming

Weighted Sum Method

Min
$$w_1(TSE) + w_2(NSE) + w_3(BSP) + w_4(PCC)$$

s. t. "rules/requirements"
 $x_{rds} \in \{0,1\}$

- Quantifying preferences (w_i) is difficult
 - Weights are subjective and difficult to quantify
 - Resulting schedule does not match their intentions
 - Various measurement units
 - Equity (σ , Max|diff_{ij}|, \sum |diff_{ij}|,...)
 - Non-linearity10 BSPs ≠ 10 x 1 BSP

Metrics Formulation

- Feasibility problem
 - Constraint on metrics

```
Min w_1(TSE) + w_2(NSE) + w_3(BSP) + w_4(PCC)
s. t. "rules/requirements"
x_{rds} \in \{0,1\}
```

- Benefits of a feasibility problem
 - More flexible
 - Faster to solve: < 2 sec.</p>
 - Given: 35 days / 20 PEDs / 7 shifts

Metrics Formulation

- Feasibility problem
 - Constraint on metrics

```
\begin{aligned} & \text{Min } w_1(TSE) + w_2(NSE) + w_3(BSP) + w_4(PCC) \\ & \text{s. t.} & \text{"rules/requirements"} \\ & & x_{rds} \in \{0,1\} \\ & & lb_{TSE} \leq (TSE) \leq ub_{TSE} \\ & & lb_{NSE} \leq (NSE) \leq ub_{NSE} \\ & & lb_{BSP} \leq (BSP) \leq ub_{BSP} \\ & & lb_{PCC} \leq (PCC) \leq ub_{PCC} \end{aligned}
```

- Benefits of a feasibility problem
 - More flexible
 - Faster to solve: < 2 sec.</p>
 - Given: 35 days / 20 PEDs / 7 shifts

Interactive Improvement

- Example output of metrics
 - Value (Lower bound, Upper bound)

Resident Name	Number of Shifts	Number of Night Shifts	Number of Post CC	Number of Bad Sleep Templates
Smith	8 (<mark>7,9</mark>)	2 (0,10)	0 (0,1)	1 (0,1)
Sanchez	8 (7,10)	1 (0,10)	0 (0,1)	1 (0,1)
Chen	8 (<mark>7,9</mark>)	5 (0,10)	1 (0,1)	1 (0,1)
Shah	14 (13,15)	3 (0,10)	1 (<mark>0,1</mark>)	1 (0,1)
ŧ	:	:	÷	:

- Interactive approach engaging chief resident
 - Iteratively adjust bounds on metric constraints
 - Quickly build high quality schedule

Results

- Our metrics-based scheduling tool:
 - Reduces time to create schedules

20 hours / 1 hour /month

- Solves a multi-criteria scheduling problem

Limitations

Myopic Solution

- Non-Pareto solution could be selected by chief residents
 - Never see the whole picture (the set of Pareto solutions)
 - The most preferred solution is "most preferred" with respect to their satisfaction

Next Step

Pareto Front

- Generate the Pareto solutions of the problem (all of them or a sufficient representation)
 - Select the most preferred one among them

Notation

- $-\mathcal{H}$: Solution Space, the set of feasible solutions
- $-\mathcal{P}$: Pareto Front, the set of solutions in objective space
- $-z_i = f_i(x)$: ith integer objective function, $\in \mathbb{Z}$
- Dominance (\prec): x < x' if and only if $z_i \le z_i'$ where at least one inequality is strict
- Bi-Objective Problem

$$\min f(x) = (f_1(x), f_2(x))$$
s. t. $x \in \mathcal{H}$

Pareto Square Region

– Ideal Point:

•
$$\mathbf{z}_1^* = \min_{\mathbf{x} \in \mathcal{H}} f_1(\mathbf{x}) \text{ and } \mathbf{z}_2^* = \min_{\mathbf{x} \in \mathcal{H}} f_2(\mathbf{x})$$

– Nadir Point:

•
$$\overline{z}_1 = \min_{x \in \mathcal{H} \cap f_2(x) = z_2^*} f_1(x)$$
 and $\overline{z}_2 = \min_{x \in \mathcal{H} \cap f_1(x) = z_1^*} f_2(x)$

Pareto Square Region

– Ideal Point:

•
$$\mathbf{z}_1^* = \min_{\mathbf{x} \in \mathcal{H}} f_1(\mathbf{x})$$
 and $\mathbf{z}_2^* = \min_{\mathbf{x} \in \mathcal{H}} f_2(\mathbf{x})$

– Nadir Point:

•
$$\overline{z}_1 = \min_{x \in \mathcal{H} \cap f_2(x) = z_2^*} f_1(x)$$
 and $\overline{z}_2 = \min_{x \in \mathcal{H} \cap f_1(x) = z_1^*} f_2(x)$

Pareto Square Region

- Ideal Point:
 - $\mathbf{z}_1^* = \min_{\mathbf{x} \in \mathcal{H}} f_1(\mathbf{x})$ and $\mathbf{z}_2^* = \min_{\mathbf{x} \in \mathcal{H}} f_2(\mathbf{x})$
- Nadir Point:

•
$$\overline{z}_1 = \min_{x \in \mathcal{H} \cap f_2(x) = z_2^*} f_1(x)$$
 and $\overline{z}_2 = \min_{x \in \mathcal{H} \cap f_1(x) = z_1^*} f_2(x)$

Pareto Square Region

- Ideal Point:
 - $\mathbf{z}_1^* = \min_{\mathbf{x} \in \mathcal{H}} f_1(\mathbf{x}) \text{ and } \mathbf{z}_2^* = \min_{\mathbf{x} \in \mathcal{H}} f_2(\mathbf{x})$
- Nadir Point:

•
$$\overline{z}_1 = \min_{x \in \mathcal{H} \cap f_2(x) = z_2^*} f_1(x)$$
 and $\overline{z}_2 = \min_{x \in \mathcal{H} \cap f_1(x) = z_1^*} f_2(x)$

Pareto Square Region

- Ideal Point:
 - $\mathbf{z}_1^* = \min_{\mathbf{x} \in \mathcal{H}} f_1(\mathbf{x}) \text{ and } \mathbf{z}_2^* = \min_{\mathbf{x} \in \mathcal{H}} f_2(\mathbf{x})$
- Nadir Point:

•
$$\overline{z}_1 = \min_{x \in \mathcal{H} \cap f_2(x) = z_2^*} f_1(x)$$
 and $\overline{z}_2 = \min_{x \in \mathcal{H} \cap f_1(x) = z_1^*} f_2(x)$

Pareto Square Region

– Ideal Point:

•
$$\mathbf{z}_1^* = \min_{\mathbf{x} \in \mathcal{H}} f_1(\mathbf{x}) \text{ and } \mathbf{z}_2^* = \min_{\mathbf{x} \in \mathcal{H}} f_2(\mathbf{x})$$

– Nadir Point:

•
$$\overline{z}_1 = \min_{x \in \mathcal{H} \cap f_2(x) = z_2^*} f_1(x)$$
 and $\overline{z}_2 = \min_{x \in \mathcal{H} \cap f_1(x) = z_1^*} f_2(x)$


```
Algorithm 1 Exact squeezing algorithm for bi-objective problems Let P is set of pareto solutions we've found; Compute the ideal (z_1^*,z_2^*) and Nadir (\bar{z}_1,\bar{z}_2) points; Set P:=\{(\bar{z}_1,z_2^*)\} and \delta:=\bar{z}_1-1; WHILE \delta\geq z_1^* Solve P_2(\delta) and get optimal solution (z_1^i,z_2^i) to P_2(\delta); //Given (z_1^i,z_2^i), Find a left-botton corner (\hat{z}_1^i) in the Pareto set; Solve SQZ_1(z_2^i) and get optimal solution (\hat{z}_1^i,z_2^i) to SQZ_1(z_2^i); END WHILE Set P:=P+(\hat{z}_1^i,z_2^i) and \delta=\hat{z}_1^i-1; GO Step 2 UNTIL z_1=z_1^*;
```



```
Algorithm 1 Exact squeezing algorithm for bi-objective problems Let P is set of pareto solutions we've found; Compute the ideal (z_1^*, z_2^*) and Nadir (\bar{z}_1, \bar{z}_2) points; Set P := \{(\bar{z}_1, z_2^*)\} and \delta := \bar{z}_1 - 1; WHILE \delta \geq z_1^* Solve P_2(\delta) and get optimal solution (z_1^i, z_2^i) to P_2(\delta); //Given (z_1^i, z_2^i), Find a left-botton corner (\hat{z}_1^i) in the Pareto set; Solve SQZ_1(z_2^i) and get optimal solution (\hat{z}_1^i, z_2^i) to SQZ_1(z_2^i); END WHILE Set P := P + (\hat{z}_1^i, z_2^i) and \delta = \hat{z}_1^i - 1; GO Step 2 UNTIL z_1 = z_1^*;
```



```
Algorithm 1 Exact squeezing algorithm for bi-objective problems Let P is set of pareto solutions we've found; Compute the ideal (z_1^*, z_2^*) and Nadir (\bar{z}_1, \bar{z}_2) points; Set P := \{(\bar{z}_1, z_2^*)\} and \delta := \bar{z}_1 - 1; WHILE \delta \geq z_1^*

Solve P_2(\delta) and get optimal solution (z_1^i, z_2^i) to P_2(\delta); //Given (z_1^i, z_2^i), Find a left-botton corner (\hat{z}_1^i) in the Pareto set; Solve SQZ_1(z_2^i) and get optimal solution (\hat{z}_1^i, z_2^i) to SQZ_1(z_2^i); END WHILE Set P := P + (\hat{z}_1^i, z_2^i) and \delta = \hat{z}_1^i - 1; GO Step 2 UNTIL z_1 = z_1^*;
```



```
Algorithm 1 Exact squeezing algorithm for bi-objective problems Let P is set of pareto solutions we've found; Compute the ideal (z_1^*, z_2^*) and Nadir (\bar{z}_1, \bar{z}_2) points; Set P := \{(\bar{z}_1, z_2^*)\} and \delta := \bar{z}_1 - 1; WHILE \delta \geq z_1^* Solve P_2(\delta) and get optimal solution (z_1^i, z_2^i) to P_2(\delta); //Given (z_1^i, z_2^i), Find a left-botton corner (\hat{z}_1^i) in the Pareto set; Solve SQZ_1(z_2^i) and get optimal solution (\hat{z}_1^i, z_2^i) to SQZ_1(z_2^i); END WHILE Set P := P + (\hat{z}_1^i, z_2^i) and \delta = \hat{z}_1^i - 1; GO Step 2 UNTIL z_1 = z_1^*;
```



```
Algorithm 1 Exact squeezing algorithm for bi-objective problems Let P is set of pareto solutions we've found; Compute the ideal (z_1^*, z_2^*) and Nadir (\bar{z}_1, \bar{z}_2) points; Set P := \{(\bar{z}_1, z_2^*)\} and \delta := \bar{z}_1 - 1; WHILE \delta \geq z_1^* Solve P_2(\delta) and get optimal solution (z_1^i, z_2^i) to P_2(\delta); //Given (z_1^i, z_2^i), Find a left-botton corner (\hat{z}_1^i) in the Pareto set; Solve SQZ_1(z_2^i) and get optimal solution (\hat{z}_1^i, z_2^i) to SQZ_1(z_2^i); END WHILE Set P := P + (\hat{z}_1^i, z_2^i) and \delta = \hat{z}_1^i - 1; GO Step 2 UNTIL z_1 = z_1^*;
```



```
Algorithm 1 Exact squeezing algorithm for bi-objective problems Let P is set of pareto solutions we've found; Compute the ideal (z_1^*, z_2^*) and Nadir (\bar{z}_1, \bar{z}_2) points; Set P := \{(\bar{z}_1, z_2^*)\} and \delta := \bar{z}_1 - 1; WHILE \delta \geq z_1^* Solve P_2(\delta) and get optimal solution (z_1^i, z_2^i) to P_2(\delta); //Given (z_1^i, z_2^i), Find a left-botton corner (\hat{z}_1^i) in the Pareto set; Solve SQZ_1(z_2^i) and get optimal solution (\hat{z}_1^i, z_2^i) to SQZ_1(z_2^i); END WHILE Set P := P + (\hat{z}_1^i, z_2^i) and \delta = \hat{z}_1^i - 1; GO Step 2 UNTIL z_1 = z_1^*;
```


Ongoing Research

Tri-Objective Problem

$$\min f(x) = (f_1(x), f_2(x), f_3(x))$$
s. t. $x \in \mathcal{H}$

n-Objective Problem

$$\min f(x) = (f_1(x), f_2(x), \dots, f_n(x))$$

s. t. $x \in \mathcal{H}$

"Three is more than two plus one."

(Gandibleux, Xavier, ed. Multiple criteria optimization: state of the art annotated bibliographic surveys. Vol. 52. Springer Science & Business Media, 2002)

- Tri-Objective Problem
 - Where is Pareto Front?

- Tri-Objective Problem
 - How to find Pareto Front?

- Pareto Surface
 - Ideal Point and Nadir Points

Pareto Surface

Given fixed z level, apply bi-objective approach

Pareto Surface

Given fixed z level, apply bi-objective approach

Future Research

- Approximation
 - Sampling
 - Speed up

Integration with Interactive Method

Interactive feedback

Decision on Pareto Front

Future Research

- Approximation
 - Sampling
 - Speed up
- Integration with Interactive Method

Acknowledgement

 Thank you to CHEPS, TDC Foundation, the Bonder Foundation, and Dr. Brian Jordan, Dr. Micah Long, Dr. Jenny Zank and Dr. Ed O'Brien for making this research possible.

Feedback and Questions

Young-Chae Hong

hongyc@umich.edu

Prof. Amy Cohn amycohn@med.umich.edu

Department of Industrial and Operations
Engineering
University of Michigan