Using Mathematical Programming to Improve Scheduling for Medical Residents

Presenter: Young-Chae Hong M.S.E.
University of Michigan

INFORMS Healthcare Conference 2013
Chicago, IL
Original Collaborators

• Rose, Ariella
• Perelstein, Elizabeth, B.S.
• Long, Micah, M.D.
• Cohn, Amy, Ph.D.
Current Team

• Jennifer Zank, M.D.
• Daniel Madwed, B.S.E.
• Luke Simonson
• Zachary VerSchure
• Elisa Gunawan, B.S.E.
• Kathryn Schumacher, M.S.E.
• William Pozehl, B.S.E.
Contents

- Background
- Mathematical Method
- Schedule Quality
- Optimized Residency Scheduling Assistant (ORSA)
- Results
- Conclusion
Residency

• 3-7 year medical training program after completion of medical school
• Development of specialty skills
• Work supervised by attending physicians
• Responsibilities differ by residency year
 – Intern / Senior
Resident Responsibilities in the U-M Pediatric Emergency Department

• Balancing patient care and educational requirements
 – In hospital
 • Caring for patients
 • Teaching medical students
 • Learning from attending physicians
 – Out of hospital
 • Community clinics
 • Conferences
 • Other educational requirements
Pediatric ED: Scheduling Considerations

• All shifts assigned to a resident
• Appropriate coverage
 – e.g. certain shifts require a senior resident
• ACGME rules (similar to ABET for engineering)
 – e.g. 10 hour break rule
• Continuity clinics / Conferences
• Varying start dates
• Time-off requests
• And others
Previous Shift Making Methodology

- Chief Resident built monthly schedule by hand
- Guess and check
- Development required 20 - 25 hours
 - Approximately 15 hours to build
 - 10 hours to fix errors
- Errors
 - Not easy to recognize
 - Start it over
Mathematical Modeling

• Incorporates many inputs
• Abides all rules / requirements
• Solves for feasible schedule quickly
Formulation

• Sets
 – R: set of Residents
 • 15-25 residents
 – D: set of days in the schedule
 • 35 days
 – S: set of shifts
 • 8 shifts

• Decision Variables
 – Binary: \(x_{rds} \in \{0,1\} \)
 • 1 if resident \(r \) works shift \(s \) on day \(d \)
 • 0 otherwise

<table>
<thead>
<tr>
<th>Residents Name</th>
<th>27th</th>
<th>...</th>
<th>1st</th>
<th>...</th>
<th>31st</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanchez</td>
<td>Shah</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shah</td>
</tr>
<tr>
<td>Shah</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shah</td>
</tr>
<tr>
<td>Chen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith</td>
<td></td>
<td></td>
<td>Sanchez</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Sanchez</td>
<td></td>
<td></td>
<td>Smith</td>
<td>...</td>
<td>Smith</td>
</tr>
<tr>
<td>Smith</td>
<td></td>
<td></td>
<td>Chen</td>
<td>...</td>
<td>Joe</td>
</tr>
<tr>
<td>Joe</td>
<td></td>
<td></td>
<td>Smith</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Formulation

• **Constraints**

 – One resident assigned to each shift in the month

 \[\sum_{r \in \text{all}} x_{rds} = 1, \forall d, \forall s \]

 – Meets shift requests

 \[x_{rds} = 0, \forall r, \forall d, s \in \{\text{day off, conferences, continuity clinic}\} \]

 – Ensure resident type appropriate for shift

 \[1 \leq \sum_{r \in \text{PED}} \sum_{s \in P} x_{rds}, \forall d, P = \{\{7a, 9a\}, \{4p, 5p\}, \{8p, 11p\}\} \]

 – Intern-forbidden shifts

 \[\sum_{r \in \text{interns}} \sum_{d} x_{rds} = 0, \forall s \in \{7a, 11p\} \]

 – And others
Objectives

• Create a good quality schedule with no violations:
 – Total shift equity
 – Night shift equity
 – Minimum bad sleep patterns
 – Minimum post-clinic shifts

• Multi-criteria problem
 – Trade-off
Metrics: Shift Fairness

- Improving total / night shift equity
 - practice quality in education training
 - poor morale and decreased learning ability

<table>
<thead>
<tr>
<th>Resident Name</th>
<th>Smith</th>
<th>Jones</th>
<th>Chen</th>
<th>Joe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Night Shifts / Total Shifts</td>
<td>0 / 7</td>
<td>1 / 7</td>
<td>1 / 7</td>
<td>5 / 7</td>
</tr>
</tbody>
</table>

Fairness:

- 😊 😊 😊 😞
Metrics: Bad Sleep Patterns

• Work with (not against) circadian rhythm
 – Improves resident quality of life
 – Increases patient safety
Metrics: Post-Clinic Shifts

• Limit post-clinic shifts
 – Improves resident quality of life
 – Increases patient safety

<table>
<thead>
<tr>
<th>Day</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIGHT</td>
<td></td>
<td>Continuity Clinics 7AM – 2PM</td>
<td></td>
</tr>
<tr>
<td>Day</td>
<td></td>
<td>4PM – 1AM</td>
<td></td>
</tr>
<tr>
<td>NIGHT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multi-Criteria Problem: Weighted Sum

\[
\text{Min } w_1(\text{Equity}) + w_2(\text{BSPs}) + w_3(\text{PostCC}) \ldots
\]

- Quantifying preferences is difficult
 - No clear way for trade-off
 - Doesn’t match your original thought
- Computational time
 - Much slower than feasibility problem
- Chief resident identifies undesirable qualitative characteristics
 - Interactive feedback
Optimized Residency Scheduling Assistant (ORSA): Metrics Formulation

- **Constraint on metrics**

\[
\begin{align*}
\min \, \text{(weighted sum)} \\
\text{s.t. } "\text{rules/ requirements}" \\
x_{rds} \in \{0,1\}
\end{align*}
\]

- **Feasible problem**
 - It is enough to know “feasible or infeasible?”

- **Benefits of a feasibility problem**
 - More flexible
 - Faster to solve: in less than 2 sec.
 - Given: 35 days / 20 PEDs / 8 shifts
 - Phase I only

\[
\begin{align*}
\min \, \text{(weighted sum)} \\
\text{s.t. } "\text{rules/ requirements}" \\
x_{rds} \in \{0,1\} \\
L_b \leq \text{(Equity)} \leq U_b \\
L_b \leq \text{(BSPs)} \leq U_b \\
L_b \leq \text{(PostCC)} \leq U_b
\end{align*}
\]
Optimized Residency Scheduling Assistant (ORSA) : Interactive Improvement

• Example output
 – Value (Lower bound, Upper bound) of metrics

<table>
<thead>
<tr>
<th>Resident Name</th>
<th>Number of Shifts</th>
<th>Number of Night Shifts</th>
<th>Number of Post CC</th>
<th>Number of Bad Sleep Templates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>8 (7,9)</td>
<td>1 (0,10)</td>
<td>0 (0,1)</td>
<td>1 (0,1)</td>
</tr>
<tr>
<td>Sanchez</td>
<td>8 (7,10)</td>
<td>2 (0,10)</td>
<td>0 (0,1)</td>
<td>1 (0,1)</td>
</tr>
<tr>
<td>Chen</td>
<td>8 (7,9)</td>
<td>3 (0,10)</td>
<td>1 (0,1)</td>
<td>1 (0,1)</td>
</tr>
<tr>
<td>Shah</td>
<td>14 (13,15)</td>
<td>4 (0,10)</td>
<td>1 (0,1)</td>
<td>1 (0,1)</td>
</tr>
</tbody>
</table>

• Interactive approach engaging chief resident
 – Iteratively adjust bounds on metric constraints
 – High quality schedule built quickly
Objective:

\[\text{Minimize } 0 \]

Subject to:

\[1 \leq \sum_{r \in \{PRD\}} \sum_{s \in \{s_1, s_2\}} x_{rsd} \leq 2, \quad \forall d, \forall s \in \{7a, 4p, 8p\} \]

\[LB \leq \sum_{d} \sum_{s} x_{rsd} \leq UB, \quad \forall r \]

\[\sum_{d} x_{rds} = 0, \quad \forall r, \forall d, s \in \text{conference} \]

Decision variable:

\[y_r, x_{rsd} \in \{0, 1\} \]

INPUT

- Input Program Data from Excel or Text Files
- Resident Data
- Program Requirements

ORSA

Builds a schedule in less than 2 seconds

OUTPUT

- Monthly Schedule
- Schedule by Resident
- Metrics Report

Use ORSA to Interactively Improve Schedule

- **Good Enough?**
- **Need Change?**

NEW RULES OR METRICS

- “WHAT IF?” ANALYSES

END
ORSA Methodology

1. Build a schedule
2. Adjust or relax constraints
 - No
 - Adjust total shift per resident
 - Adjust night shift per resident
 - Adjust BSPs or post-CC metric
 - Yes
 - Is it feasible?
 - Yes
 - Generate outputs
 - Schedule & Metrics report
 - Total shift equity?
 - Yes
 - Night shift equity?
 - Yes
 - Can we reduce BSPs or post-CCs?
 - No
 - END
 - No
 - No
 - No
 - No
 - No
 - Yes
 - END
Results: Shift Equity

<table>
<thead>
<tr>
<th></th>
<th>2010-2011 (Without ORSA)</th>
<th>2012-2013 (With ORSA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Shift Disparity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Night Shift Disparity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: Bad Sleep and Post-Clinic Shifts

Bad Sleep Patterns

Count per Resident per Month

2010-2011 (Without ORSA)

2012-2013 (With ORSA)

Post-Clinic Shifts
Conclusions

• Our optimization-based scheduling tool:
 – Solves a multi-criteria scheduling problem
 – Reduces time to create schedule
 • Approximately 24 hour reduction per month
 – Improves measures of schedule quality
Next Steps

- Create multiple schedules
- Automate trial-and-check
- Apply to other departments/scheduling problems
Acknowledgements

• Thank you to CHEPS, SURE, TDC Foundation, the Bonder Foundation, and Dr. Brian Jordan for making this research possible.
Thank You!